Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

La variété β -NaMoO₂(AsO₄)

Soumaya Ben Hlila, Mohamed Faouzi Zid* et Ahmed Driss

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences, Université de Tunis–El Manar, 2092 El Manar, Tunis, Tunisie Correspondence e-mail: faouzi.zid@fst.rnu.tn

Reçu le 14 janvier 2009; accepté le 20 janvier 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (Mo–O) = 0.003 Å; disorder in main residue; R factor = 0.019; wR factor = 0.053; data-to-parameter ratio = 10.5.

The title compound, sodium dioxidomolybdenum(VI) arsenate(V), β -NaMoO₂AsO₄, was prepared by solid-state reaction at 953 K. In the crystal structure, the AsO₄ tetrahedra and MoO₆ octahedra (both with *m* symmetry) share corner atoms to form a three-dimensional framework that delimits cavities parallel to [010] where disordered six-coordinated sodium cations (half-occupation) are located. Structural relationships between the different orthoarsenates of the AMoO₂AsO₄ series (A = Ag, Li, Na, K and Rb) are discussed.

Littérature associée

Pour le contexte général du travail, voir: Brown & Altermatt (1985); Benhamada *et al.* (1992); Haddad *et al.* (1988); Harrison *et al.* (1994); Ledain *et al.* (1997); Piffard *et al.* (1985); Zid *et al.* (1992). La structure est isotypique avec AgMoO₂AsO₄ (Hajji & Zid, 2006) et KMoO₂AsO₄ (Zid & Jouini, 1996*a*). Pour structures associées, voir: Hajji *et al.* (2004) (β -LiMoO₂AsO₄); Hajji *et al.* (2005) [Li(MoO₂)₂-O(AsO₄)]; Linnros (1970) (LiMoO₂AsO₄); Zid & Jouini (1996*b*) (K₂MoO₂As₂O₇); Zid & Jouini (1999) (RbMoO₂-AsO₄); Zid *et al.* (1997) (α -NaMoO₂AsO₄); Zid *et al.* (1998) (K₂MoO₂As₂O₇).

Partie expérimentale

Données cristallines

NaMoO₂(AsO₄) $M_r = 289.85$ Orthorhombique, *Pnma* a = 10.147 (2) Å b = 6.597 (2) Å c = 7.420 (2) Å

Collection des données

Diffractomètre Enraf–Nonius CAD-4 Correction d'absorption: ψ scan (North *et al.*, 1968) $T_{min} = 0.186, T_{max} = 0.394$ 1438 réflexions mesurées $V = 496.7 (2) Å^{3}$ Radiation Mo K α $\mu = 9.29 \text{ mm}^{-1}$ T = 298 (2) K $0.26 \times 0.16 \times 0.10 \text{ mm}$

589 réflexions independantes 539 réflexions avec $I > 2\sigma(I)$ $R_{int} = 0.027$ 2 réflexions de référence fréquence: 120 min déclin d'intensité: 1.2% Affinement

 $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.053$ S = 1.14589 réflexions

56 paramètres $\Delta \rho_{\text{max}} = 0.80 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.69 \text{ e } \text{ Å}^{-3}$

Tableau 1Paramètres géométriques(Å).

Mo1-O4	1.700 (3)	As1-O5	1.700 (2)
Mo1-O1 ⁱ	1.714 (3)	As1-O5 ^v	1.700 (2)
Mo1-O5 ⁱⁱ	1.999 (3)	Na1-O1	2.329 (4)
Mo1-O5 ⁱⁱⁱ	1.999 (3)	Na1-O2 ^{vi}	2.420 (4)
Mo1-O3	2.174 (3)	Na1-O5 ^{vii}	2.583 (4)
Mo1-O2	2.197 (3)	Na1-O4	2.590 (4)
As1-O2 ⁱ	1.678 (3)	Na1-O1 ^{viii}	2.595 (4)
As1-O3 ^{iv}	1.678 (3)	Na1-O3 ^{vi}	2.597 (4)

Codes de symétrie: (i) $x - \frac{1}{2}$, $y, -z + \frac{3}{2}$; (ii) $-x + \frac{1}{2}$, $-y, z - \frac{1}{2}$; (iii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $z - \frac{1}{2}$; (iv) x, y, z + 1; (v) $x, -y + \frac{1}{2}$, z; (vi) -x + 1, -y, -z + 1; (vii) $x + \frac{1}{2}$, $y, -z + \frac{3}{2}$; (viii) -x + 1, -y, -z + 2.

Collection des données: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); affinement des paramètres de la maille: *CAD-4 EXPRESS*; réduction des données: *XCAD4* (Harms & Wocadlo, 1995); programme(s) pour la solution de la structure: *SHELXS97* (Sheldrick, 2008); programme(s) pour l'affinement de la structure: *SHELXL97* (Sheldrick, 2008); graphisme moléculaire: *DIAMOND* (Brandenburg, 1998); logiciel utilisé pour préparer le matériel pour publication: *WinGX* (Farrugia, 1999).

Des documents complémentaires et figures concernant cette structure peuvent être obtenus à partir des archives électroniques de l'UICr (Référence: WM2218).

Références

- Benhamada, L., Grandin, A., Borel, M. M., Leclaire, A. & Raveau, B. (1992). J. Solid State Chem. 101, 154–160.
- Brandenburg, K. (1998). DIAMOND. Université de Bonn, Allemagne.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Haddad, A., Jouini, T., Piffard, Y. & Jouini, N. (1988). J. Solid State Chem. 77, 293–298.
- Hajji, M. & Zid, M. F. (2006). Acta Cryst. E62, i114-i116.
- Hajji, M., Zid, M. F., Driss, A. & Jouini, T. (2004). Acta Cryst. C60, i76-i78.
- Hajji, M., Zid, M. F. & Jouini, T. (2005). Acta Cryst. C61, i57-i58.
- Harms, K. & Wocadlo, S. (1995). XCAD4. Université de Marburg, Allemagne.
- Harrison, W. T. A., Liano, C. S., Nenouff, T. M. & Stucky, G. D. J. (1994). J. Solid State Chem. 113, 367–372.
- Ledain, S., Leclaire, A., Borel, M. M. & Raveau, B. (1997). *J. Solid State Chem.* **129**, 298–302.
- Linnros, B. (1970). Acta Chem. Scand. 24, 3711–3722.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Piffard, Y., Lachgar, A. & Tournoux, M. (1985). J. Solid State Chem. 58, 253– 256.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zid, M. F., Driss, A. & Jouini, T. (1997). J. Solid State Chem. 133, 386-390.
- Zid, M. F., Driss, A. & Jouini, T. (1998). J. Solid State Chem. 141, 500-507.
- Zid, M. F. & Jouini, T. (1996a). Acta Cryst. C52, 3-5.
- Zid, M. F. & Jouini, T. (1996b). Acta Cryst. C52, 1334-1336.
- Zid, M. F. & Jouini, T. (1999). Acta Cryst. C55, 843-845.
- Zid, M. F., Jouini, T., Jouini, N. & Piffard, Y. (1992). J. Solid State Chem. 99, 201–206.

supplementary materials

Acta Cryst. (2009). E65, i11 [doi:10.1107/S1600536809002517]

La variété β -NaMoO₂(AsO₄)

S. Ben Hlila, M. F. Zid et A. Driss

Comment

La recherche de nouveaux matériaux pouvant être potentiellement des conducteurs ioniques ou bien des échangeurs d'ions, a conduit à s'intéresser aux composés à charpentes mixtes formées d'octaèdres MO_6 (M = métal de transition) et de tétraèdres XO_4 (X = P, As). En effet, la jonction entre ces polyèdres conduit à des composés à charpentes ouvertes mixtes présentant de nombreuses propriétés physico-chimiques intéressantes qui sont en relation directe avec leurs structures cristallines (Benhamada *et al.*, 1992; Harrison *et al.*, 1994; Zid *et al.*, 1992; Piffard *et al.*, 1985; Haddad *et al.*, 1988; Ledain *et al.*, 1997). C'est dans ce cadre que nous avons exploré les systèmes A-Mo-As-O (A = cation monovalent) dans lesquels nous avons précédemment caractérisé les phases suivantes: Rb₂MoO₂As₂O₇ (Zid *et al.*, 1998), K₂MoO₂As₂O₇ (Zid & Jouini, 1996*b*), Li(MoO₂)₂O(AsO₄) (Hajji *et al.*, 2005) et AgMoO₂AsO₄ (Hajji & Zid, 2006). La variété β-NaMoO₂AsO₄ obtenue appartient à la série des orthoarséniates de formulation générale AMoO₂AsO₄.

L'unité asymétrique (Fig. 1) est construite à partir d'un octaèdre MoO₆ est d'un tétraèdre AsO₄ partageant un sommet. Ces polyèdres se lient, selon les directions [100] et [010] pour former des chaînes ondulées de formulation MoAsO₈ (Fig. 2). Ces dernières se connectent par mise en commun de sommets entre octaèdres et tétraèdres pour conduire à une charpente tridimensionnelle possédant des larges canaux où résident les cations Na⁺ (Fig. 3). Le calcul des différentes valences des liaisons utilisant la formule empirique (Brown & Altermatt, 1985) vérifie bien les valeurs de charges des ions Mo (5,94), As (4,95) et Na (0,90) dans la phase étudiée. La structure est similaire à celle au potassium KMoO₂AsO₄ (Zid & Jouini, 1996a) et à l'argent AgMoO₂AsO₄ (Hajji & Zid, 2006). Notons que dans la série AMoO₂AsO₄ de cation monovalent joue un rôle important et conduit à différents types structuraux notamment: LiMoO₂AsO₄ orthorhombique, groupe non-centrosymétrique $Pn2_1a$ (Linnros, 1970), NaMoO₂AsO₄ orthorhombique, groupe non-centrosymétrique $Pca2_1$ (Zid *et al.*, 1997), RbMoO₂AsO₄ orthorhombique, groupe *Fddd* (Zid & Jouini, 1999), β-LiMoO₂AsO₄ monoclinique, groupe non-centrosymétrique $P2_1$ (Hajji *et al.*, 2004) et la nouvelle variété β-NaMoO₂AsO₄ orthorhombique, groupe Pnma. Afin d'utiliser les données structurales et les relier aux propriétés physico-chimiques, en particulier de conduction ioniques et dès l'obtention d'une phase polycristalline pure du β-NaMoO₂AsO₄, des mesures éléctriques moyennant un pont d'impédance complexe de type HP4192A seront réalisées.

Experimental

Les cristaux relatifs à la variété β -NaMoO₂AsO₄ ont été obtenus à partir des réactifs: (NH₄)₂Mo₄O₁₃ (Fluka), NH₄H₂AsO₄ (préparé au laboratoire, ASTM 01-775) et Na₂CO₃ (Prolabo) pris dans les rapports molaires Na:Mo:As égaux à 2:3:4. Le mélange, finement broyé, est préchauffé à l'air à 623 K en vue d'éliminer NH₃, H₂O et CO₂. Il est ensuite porté jusqu'à une température de synthèse proche de la fusion, 953 K. Le mélange est alors abandonné à cette température pendant deux semaines pour favoriser la germination des cristaux. Le résidu final a subi en premier un refroidissement lent (5°/h) jusqu'à 873 K puis un second rapide (50°/h) jusqu'à la température ambiante. Des cristaux jaunâtres, de taille suffisante pour les

mesures des intensités, ont été séparés du flux par l'eau bouillante. Une analyse qualitative au M.E.B.E. de type FEI Quanta 200 confirme la présence des différents éléments chimiques attendus: As, Mo, et Na.

Refinement

L'analyse de la Fourier différence finale ne révèle aucun pic résiduel significatif. Par ailleurs les ellipsoïdes sont très bien définis.

Figures

Fig. 1. Unité asymétrique dans la variété β -NaMoO₂AsO₄. [Code de sym'etrie: voir table 1.]

Fig. 2. Projection de la structure de la variété β -NaMoO₂AsO₄ selon *c* montrant les châines MoAsO₈.

Fig. 3. Projection de la structure de la variété β -NaMoO₂AsO₄ selon *b* montrant les canaux où résident les cations Na⁺.

sodium dioxidomolybdenum(VI) arsenate(V)

Crystal data NaMoO₂(AsO₄) $M_r = 289.85$ Orthorhombic, Pnma Hall symbol: -P 2ac 2n a = 10.147 (2) Å b = 6.597 (2) Å

 $F_{000} = 536$ $D_x = 3.876 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 12-15^{\circ}$ $\mu = 9.29 \text{ mm}^{-1}$

supplementary materials

c = 7.420 (2) Å	T = 298 (2) K
$V = 496.7 (2) \text{ Å}^3$	Prism, yellow
Z = 4	$0.26 \times 0.16 \times 0.10 \text{ mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer	$R_{\rm int} = 0.027$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 27.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 3.4^{\circ}$
T = 298(2) K	$h = -1 \rightarrow 12$
$\omega/2\theta$ scans	$k = -1 \rightarrow 8$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -9 \rightarrow 9$
$T_{\min} = 0.186, T_{\max} = 0.394$	2 standard reflections
1438 measured reflections	every 120 min
589 independent reflections	intensity decay: 1.2%
539 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.053$ S = 1.14

589 reflections

56 parameters

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Secondary atom site location: difference Fourier map

Extinction correction: SHELXL97 (Sheldrick, 2008),

 $w = 1/[\sigma^2(F_0^2) + (0.0251P)^2 + 0.2566P]$

 $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0099 (7)

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$

 $\Delta \rho_{max} = 0.80 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.69 \ {\rm e} \ {\rm \AA}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x y	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
-----	---	---------------------------	-----------

supplementary materials

Mo1	0.32396 (4)	0.2500	0.44866 (5)	0.00991 (16)	
As1	0.16109 (5)	0.2500	1.03646 (5)	0.00844 (16)	
Na1	0.5123 (3)	0.0151 (6)	0.8833 (4)	0.0280 (7)	0.50
01	0.6584 (3)	0.2500	1.0056 (5)	0.0213 (8)	
O2	0.5243 (3)	0.2500	0.3365 (4)	0.0148 (7)	
O3	0.3009 (3)	0.2500	0.1573 (4)	0.0120 (6)	
O4	0.3898 (3)	0.2500	0.6593 (4)	0.0227 (8)	
O5	0.1628 (2)	0.0465 (4)	0.8960 (3)	0.0172 (5)	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.0098 (2)	0.0112 (2)	0.0087 (2)	0.000	-0.00007 (14)	0.000
As1	0.0085 (2)	0.0086 (3)	0.0082 (2)	0.000	-0.00054 (16)	0.000
Na1	0.0261 (17)	0.0240 (18)	0.0339 (15)	-0.0048 (12)	-0.0057 (12)	-0.0035 (17)
01	0.0145 (17)	0.031 (2)	0.0178 (15)	0.000	-0.0009 (13)	0.000
O2	0.0092 (14)	0.0224 (19)	0.0128 (15)	0.000	-0.0022 (13)	0.000
O3	0.0100 (14)	0.0131 (16)	0.0129 (14)	0.000	-0.0022 (12)	0.000
O4	0.0163 (17)	0.039 (2)	0.0124 (14)	0.000	-0.0019 (13)	0.000
O5	0.0231 (13)	0.0128 (11)	0.0158 (10)	-0.0016 (10)	-0.0028 (9)	-0.0042 (10)

Geometric parameters (Å, °)

Mo1—O4	1.700 (3)	As1—O5	1.700 (2)
Mo1—O1 ⁱ	1.714 (3)	As1—O5 ^v	1.700 (2)
Mo1—O5 ⁱⁱ	1.999 (3)	Na1—O1	2.329 (4)
Mo1—O5 ⁱⁱⁱ	1.999 (3)	Na1—O2 ^{vi}	2.420 (4)
Mo1—O3	2.174 (3)	Na1—O5 ^{vii}	2.583 (4)
Mo1—O2	2.197 (3)	Na1—O4	2.590 (4)
As1—O2 ⁱ	1.678 (3)	Na1—O1 ^{viii}	2.595 (4)
As1—O3 ^{iv}	1.678 (3)	Na1—O3 ^{vi}	2.597 (4)
04—Mo1—O1 ⁱ	101.71 (16)	O1 ⁱ —Mo1—O2	169.17 (14)
O4—Mo1—O5 ⁱⁱ	98.82 (7)	O5 ⁱⁱ —Mo1—O2	82.17 (7)
O1 ⁱ —Mo1—O5 ⁱⁱ	96.00 (7)	O5 ⁱⁱⁱ —Mo1—O2	82.17 (7)
O4—Mo1—O5 ⁱⁱⁱ	98.82 (7)	O3—Mo1—O2	73.93 (12)
O1 ⁱ —Mo1—O5 ⁱⁱⁱ	96.00 (7)	O2 ⁱ —As1—O3 ^{iv}	113.51 (16)
O5 ⁱⁱ —Mo1—O5 ⁱⁱⁱ	156.15 (12)	O2 ⁱ —As1—O5	110.67 (10)
O4—Mo1—O3	163.05 (14)	O3 ^{iv} —As1—O5	108.60 (10)
O1 ⁱ —Mo1—O3	95.24 (14)	O2 ⁱ —As1—O5 ^v	110.67 (10)
O5 ⁱⁱ —Mo1—O3	79.22 (6)	O3 ^{iv} —As1—O5 ^v	108.60 (10)
O5 ⁱⁱⁱ —Mo1—O3	79.22 (6)	O5—As1—O5 ^v	104.37 (16)
O4—Mo1—O2	89.12 (14)		

Symmetry codes: (i) *x*-1/2, *y*, -*z*+3/2; (ii) -*x*+1/2, -*y*, *z*-1/2; (iii) -*x*+1/2, *y*+1/2, *z*-1/2; (iv) *x*, *y*, *z*+1; (v) *x*, -*y*+1/2, *z*; (vi) -*x*+1, -*y*, -*z*+1; (vii) *x*+1/2, *y*, -*z*+3/2; (viii) -*x*+1, -*y*, -*z*+2.

Fig. 1

Fig. 2

Fig. 3